Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(52): e202315382, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37945541

RESUMO

By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.

2.
Small ; 18(13): e2107160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146899

RESUMO

Emerging noninvasive treatments, such as sonodynamic therapy (SDT) and chemodynamic therapy (CDT), have developed as promising alternatives or supplements to traditional chemotherapy. However, their therapeutic effects are limited by the hypoxic environment of tumors. Here, a biodegradable nanocomposite-mesoporous zeolitic-imidazolate-framework@MnO2 /doxorubicin hydrochloride (mZMD) is developed, which achieves enhanced SDT/CDT/chemotherapy through promoting oxidative stress and overcoming the multidrug resistance. The mZMD decomposes under both ultrasound (US) irradiation and specific reactions in the tumor microenvironment (TME). The mZM composite structure reduces the recombination rate of e- and h+ to improve SDT. MnO2 not only oxidizes glutathione in tumor cells to enhance oxidative stress, but also converts the endogenic H2 O2 into O2 to improve the hypoxic TME, which enhances the effects of chemotherapy/SDT. Meanwhile, the generated Mn2+ catalyzes the endogenic H2 O2 into ·OH for CDT, and acts as magnetic resonance imaging agent to guide therapy. In addition, dissociated Zn2+ further breaks the redox balance of TME, and co-inhibits the expression of P-glycoprotein (P-gp) with generated ROS to overcome drug resistance. Thus, the as-prepared intelligent biodegradable mZMD provides an innovative strategy to enhance SDT/CDT/chemotherapy.


Assuntos
Compostos de Manganês , Óxidos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Estresse Oxidativo , Óxidos/química , Microambiente Tumoral
3.
J Colloid Interface Sci ; 608(Pt 1): 344-354, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626980

RESUMO

Prussian blue (PB) is a safe photothermal agent for tumor therapy, yet poor photothermal effect and single therapeutic function severely restrict its further clinical applications. Herein, a biodegradable "Nano-donut" (CMPB-MoS2-PEG) is fabricated for magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT)/ chemodynamic therapy (CDT)/chemotherapy through responsive catalysis in tumor microenvironment (TME). The "Nano-donut" is organically composed of Cu/Mn ions doped-PB and MoS2. The porous donut structure of CMPB-MoS2-PEG endows them as a carrier for delivery of doxorubicin hydrochloride (DOX) to tumor site. The framework of Nano-donut specifically decomposes in TME due to the reaction between Fe2+/Fe3+ and H2O2. The multivalent elements (Cu/Fe/Mn ions) decrease the bandgap and then enhance CDT by synergistically catalyzing H2O2 into toxic ·OH. Meanwhile, the Mn4+ also reacts with H2O2 to generate O2, improving the hypoxia of TME and enhancing the chemotherapy effect of released DOX. The MoS2 mingles in the PB, which significantly enhances photothermal conversion efficiency (η) effect of PB from 16.02% to 38.0%. In addition, Fe3+ as T2-weighted MR imaging agent can achieve MR imaging-guided therapy. The data clearly shows Nano-donut/DOX nanocomposites (NCs) have a remarkable inhibition for cancer cells and excellent biological safety in tumor treatment.


Assuntos
Nanopartículas , Microambiente Tumoral , Catálise , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Terapia Fototérmica
4.
J Colloid Interface Sci ; 604: 80-90, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265694

RESUMO

Cancer is a leading cause of death worldwide and seriously threatens the health of humans. The current clinical treatments for cancer are not efficient and always lead to significant side effects. Herein, a biocompatible and powerful theranostic agent (Bi@mSiO2@MnO2/DOX) is fabricated using a facile stepwise reaction method. The Bi nanoparticles (NPs) are coated by mesoporous silica to protect the Bi NPs from oxidation, which guarantees the stable photothermal effect of the Bi NPs. When the Bi@mSiO2@MnO2/DOX nanocomposites (NCs) accumulate in the tumour site, hyperthermia is generated by Bi NPs under near-infrared (NIR) light irradiation for photothermal therapy (PTT), and the generated heat triggers the release of DOX for chemotherapy in the tumour. In addition, the MnO2 of the NCs responsively catalyses endogenous H2O2 to generate O2, raising the oxygen level to enhance the effect of chemotherapy in the tumour microenvironment (TME), and consumes glutathione (GSH) to produce Mn2+ for magnetic resonance (MR) imaging. Under acidic TME conditions, H2O2 and Mn2+ also produce toxic hydroxyl radical (·OH) for chemodynamic therapy (CDT). Furthermore, the Bi NPs can also be used as excellent contrast agents for X-ray computed tomography (CT) imaging of tumours with a high CT value (6.865 HU mM-1). The Bi@mSiO2@MnO2/DOX NCs exhibit a powerful theranostic performance for CT/MR imaging-guided enhanced PTT/CDT/chemotherapy, which opens a new prospect to rationally design theranostic agents for tumour imaging.


Assuntos
Nanopartículas , Neoplasias , Bismuto , Humanos , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Compostos de Manganês , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...